ll Mengenlehre Propädeutikum 2018

Holger Wuschke

18. September 2018

Begriffe in der Mengenlehre

Definition einer Menge (Georg Cantor, 1869)

"Unter einer Menge verstehen wir jede Zusammenfassung \mathcal{M} von bestimmten wohlunterschiedenen Objecten m unsrer Anschauung oder unseres Denkens (welche die **Elemente** von \mathcal{M} genannt werden) zu einem Ganzen."

 $a \in \mathcal{M}$ (a ist ein Element von \mathcal{M}) $a \notin \mathcal{M}$ (a ist kein Element von \mathcal{M}) ∅ - die leere Menge

- **1** \mathcal{M} = {1,3,4,17,42}, dann ist bspw. 42 ∈ \mathcal{M} , aber 2 ∉ \mathcal{M} {1,3,1,17,4,3,1,42,1} = {1,3,4,17,42} − jedes Element kommt nur einmal vor
- ② N ist die Menge der natürlichen Zahlen

Mengenbeziehungen

Seien $\mathcal{M}_1, \mathcal{M}_2$ Mengen.

 $\mathcal{M}_1 \subseteq \mathcal{M}_2 \Leftrightarrow \text{alle Elemente von } \mathcal{M}_1 \text{ sind auch in } \mathcal{M}_2 \text{ enthalten.}$ $(\mathcal{M}_1 \text{ ist Teilmenge von } \mathcal{M}_2)$

 $\mathcal{M}_1 \subset \mathcal{M}_2 \Leftrightarrow ext{alle Elemente von } \mathcal{M}_1 ext{ sind auch in } \mathcal{M}_2 ext{ enthalten } \frac{ ext{und}}{ ext{und}} ext{ es gibt Elemente in } \mathcal{M}_2, ext{ die nicht in } \mathcal{M}_1 ext{ sind.}$ $(\mathcal{M}_1 ext{ ist echte Teilmenge von } \mathcal{M}_2)$

 $\mathcal{M}_1 = \mathcal{M}_2 \Leftrightarrow \mathcal{M}_1$ und \mathcal{M}_2 enthalten die selben Elemente $\left(\mathcal{M}_1 \; \mathsf{gleich} \; \mathcal{M}_2 \right)$

Bemerkung

Es gilt stets: $\mathcal{M} \subseteq \mathcal{M}$ und $\emptyset \subseteq \mathcal{M}$.

lst $\mathcal{M}_1 \subseteq \mathcal{M}_2$ und $\mathcal{M}_2 \subseteq \mathcal{M}_1$, dann gilt: $\mathcal{M}_1 = \mathcal{M}_2$

implizite und explizite Angabe von Mengen

Mengen können auf zwei Arten angegeben werden:

1. Explizite Angabe aller Elemente:

$$\mathcal{M}_1 = \{1,3,6,7\}; \ \mathcal{M}_2 = \{\heartsuit,\bigstar,\Box\}$$

2. Implizite Angabe der charakteristischen Eigenschaft:

$$\mathcal{M}_3 = \{x \mid x \text{ ist Primzahl}\}; \ \mathcal{M}_4 = \{k : k \text{ ist Küchengerät}\}$$

- Sei $\mathcal{A} = \{k \mid k \text{ ist bestandene Klausur}\}$ und $\mathcal{B} = \{K \mid K \text{ ist Klausur}\}$, dann ist $\mathcal{A} \subseteq \mathcal{B}$. Wenn alle Klausuren bestanden wurden, dann ist $\mathcal{A} = \mathcal{B}$, ansonsten sogar $\mathcal{A} \subset \mathcal{B}$
- **3** $\{1,4\} \subseteq \{1,2,3,4\}$ bzw. sogar $\{1,4\} \subset \{1,2,3,4\}$

Aufgabe in der VL

Geben Sie alle Teilmengen der Menge $\mathcal{M} = \{a,b,c\}$ an.

$$\mathfrak{P}(\mathcal{M}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, M\}$$

Definition Potenzmenge, Kardinalität

Die Menge aller Teilmengen von \mathcal{M} heißt Potenzmenge von \mathcal{M} . Ist \mathcal{M} endlich, so gilt für die Anzahl der Elemente (Kardinalität) von $\mathfrak{P}(\mathcal{M})$:

$$\#\mathfrak{P}(\mathcal{M})=2^{\#\mathcal{M}}$$

Also in unserem Beispiel ist $\#\mathcal{M}=3$, somit ist $\#\mathfrak{P}(\mathcal{M})=2^3=8$.

Bemerkung

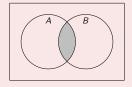
Für alle Potenzmengen gilt: $\{\emptyset, \mathcal{M}\} \subseteq \mathfrak{P}(\mathcal{M})$

Mengenoperationen

Durchschnitt

$$A \cap B = \{x \mid x \in A \text{ und } x \in B\}$$

Heißt Durchschnitt der Mengen A und B .



Ist $A \cap B = \emptyset$, so heißen A und B disjunkt.

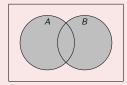
$$\{1, 2, 3, 4, 5, 6\} \cap \{-2, -1, 0, 1, 2\} = \{1, 2\}$$
$$\{x \mid x \in \mathbb{N}, x < 7\} \cap \{y \mid y \in \mathbb{Z}, |y| \le 2\} = \{1, 2\}$$

Vereinigung

$$A \cup B = \{x \mid x \in A \text{ oder } x \in B\}$$

Heißt Vereinigung der Mengen A und B.

(Das oder ist ein mathematisches - "nicht ausschließendes oder".)



2
$$\mathbb{N} \cup \{0\} = \mathbb{N}_0 = \{0, 1, 2, 3, 4, ...\}$$

Vereinigung und Schnitt von Teilmengen

Seien A und B zwei (nichtleere) Mengen, dann sind folgende Aussagen äquivalent:

- (i) *A* ⊆ *B*
- (ii) $A \cap B = A$
- (iii) $A \cup B = B$

Vereinigung und Schnitt mit Ø

Es gilt für die Menge A außerdem:

$$A \cap \emptyset = \emptyset$$

$$A \cup \emptyset = A$$

Aufgaben aus der VL

Geben Sie die folgenden Mengen explizit an:

- **1** $A = \{x \in \mathbb{N} \mid x < 5\}$
- **2** $B = \{ y \mid y \in \mathbb{Z}, \ |y| < 6 \}$

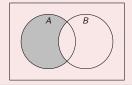
Bei den nachfolgenden Mengen wünscht man sich eine implizite Schreibweise. Geben Sie diese an.

- $\bullet E = \{5, 10, 15, 20, 25, \dots\}$
- $F = \{1, 4, 9, 16, 25, 36, ...\}$
- $\bullet H = \left\{ ..., -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, ... \right\}$

Differenzmenge

$$A \setminus B = \{x \mid x \in A \text{ und } x \notin B\}$$

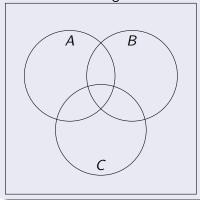
Heißt **Differenzmenge** "A ohne B".
(Achtung: A/B ist die Faktormenge!)



- $\{1, 2, 3, 4, 5, 6, 7, 8\} \setminus \{p \mid p \text{ ist Primzahl }\} = \{1, 4, 6, 8\}$
- **③** $\{S \mid S \text{ ist Säugetier }\} \setminus \{L \mid L \text{ Tier, das an Land lebt}\}$ = $\{Wal, Robbe, Seekuh, Seeotter\}$, wobei natürlich $\{Delphin\} \subseteq \{Wal\}$ gilt.

Aufgabe aus der VL

Markieren Sie die gesuchten Mengen im Venn-Diagramm.



- \bullet $(A \setminus C) \cap B$
- $(C \cap B) \cap A$
- \bullet $(A \cup B) \cap C$

Kartesisches Produkt (nach René Descarte (1596–1650))

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Heißt kartesisches Produkt der Mengen A und B. Es ist die Menge aller geordneten Paare (x, y), wobei gilt:

$$A \times B \neq B \times A$$

Bemerkung und Beispiel

In der Schule nutzen wir kartesische Produkte bei Punkten im zweidimensionalen Koordinatensystem ($\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$) oder im dreidimensionalen Koordinatensystem ($\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$).

$$A = \{1,3,5\}; B = \{2,3\}$$

$$A \times B = \{(1,2), (1,3), (3,2), (3,3), (5,2), (5,3)\}$$

$$B \times A = \{(2,1), (2,3), (2,5), (3,1), (3,3), (3,5)\}$$

Aufgabe aus der VL

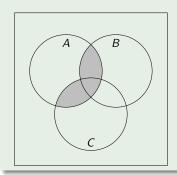
Stellen Sie die folgenden Mengen in einem geeigneten Koordinatensystem dar.

- **1** $A = \{(x, y) \mid x = 1\}$
- $B = \{(x, -2) \mid -2 \le x \le 2\}$
- **3** $C = \{(x, y) \mid x, y \in \mathbb{N}\}$
- $D = \{(x,y) \mid x+y \le 1, \ x,y \ge 0\}$
- **o** $F = \{(x, y) \mid |x| \le 3, |y| \le 1\}$
- $G = \{(x,y) \mid x^2 + y^2 = 1\}$

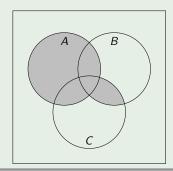
Distributivgesetze der Mengenlehre

Für drei Mengen A,B,C gilt:

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$



$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$



Zahlbereiche I	
Zahlbereich	Algebraische Ansätze
\mathbb{N} - natürliche Zahlen $\mathbb{N}=\{1,2,3,\}$	entsteht durch wiederholte Addition mit 1 besitzt neutrales Element der Multiplikation
$\begin{array}{c} \mathbb{N}_0 \\ \mathbb{N}_0 = \mathbb{N} \cup \{0\} \end{array}$	besitzt neutrales Element der Addition
\mathbb{Z} — ganze Zahlen $\mathbb{Z}=(-\mathbb{N})\cup\mathbb{N}_0$	abgeschlossene Addition durch inverse Elemente (inverse Operation: Subtraktion)
\mathbb{Q}^+ – pos. rationale Zahlen $\mathbb{Q}^+=\left\{rac{a}{b}\mid a,b\in\mathbb{N} ight\}$	abgeschlossene Multiplikation durch inverse Elemente (inverse Operation: Division) <u>aber:</u> Addition nicht abgeschlossen
\mathbb{Q} – rationale Zahlen $\mathbb{Q}=\left\{rac{a}{b}\mid a,b\in\mathbb{Z},b eq0 ight\}$	abgeschlossene Addition und Multiplikation $ ightarrow$ lineare Algebra ist mit $\mathbb Q$ zufrieden

Zahlbereiche II	
Zahlbereich	Algebraische Ansätze
\mathbb{R} - reelle Zahlen $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ $\mathbb{I} = \{x \mid x \text{ ist irrational } \}$	Eine Zahl heißt irrational, wenn sie nach dem Komma unendlich ist, aber nicht periodisch
\mathbb{C} – komplexe Zahlen $\mathbb{C} = \{a+b\cdot i \mid a,b\in\mathbb{R}\}$	Nullstellen sämtlicher Polynome mit reellen Koeffizienten.

Ein neuer Zahlbereich kann durch den vorherigen Zahlbereich konstruiert werden (Äquivalenzrelationen).

Es gilt:
$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

Aufgaben in der VL

Beschreiben Sie die folgenden beiden Mengen:

- lacksquare $\mathbb{Z}\setminus\mathbb{N}$
- **2** ℝ \ ℚ

Intervallschreibweise für Mengen reeller Zahlen

Intervallschreibweise

Seien $a, b \in \mathbb{R}$

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$$

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}; \quad \text{alternativ }]a,b[$$

$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$$

$$[a,\infty) = \{x \in \mathbb{R} \mid a \le x\}; \qquad (a,\infty) = \{x \in \mathbb{R} \mid a < x\}$$

$$(-\infty,b] = \{x \in \mathbb{R} \mid x \le b\}; \qquad (-\infty,b) = \{x \in \mathbb{R} \mid x < b\}$$

$$(-\infty,\infty) = \mathbb{R}$$

Aufgaben aus der VL

Seien $I_1 = [1,3), I_2 = [3,7], I_3 = (-2,10).$

Bilden Sie die folgenden Mengen.

- $0 I_1 \cap I_2$
- $0 I_1 \cup I_2$
- 0 $I_1 \setminus I_2$
- **③** $(I_1 \cup I_2) \cap I_3$